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SoC is the hardware foundation for IoT edge nodes. Ensuring security properties
such as confidentiality and integrity is crucial for the trustworthiness of IoT devices.
However, due to the high complexity of the global supply chain, ensuring
trustworthiness of diverse third-party suppliers becomes very much challenging. So
a comprehensive validation is needed in this regard. On the other hand, well-defined
specifications are necessary to perform rigorous and thorough validation of SoC
designs. However, in practice, such specifications are hardly available, often
incomplete and ambiguous[1]-[7]. In this work, we aim to address such a challenge
by proposing a sequential pattern mining framework, FlowMiner to automatically
extract message flow specifications. We also propose several domain specific
optimization techniques to boost up the run time of the framework. The extracted
message flows characterize the communication behavior among the components of
a SoC design, thus can be used in validation and debug of IoT edge nodes. We
evaluate our framework on execution traces generated from simulation of a non-
trivial multi-core SoC design model and on a set of complex synthetic traces. We
evaluate extracted sequential patterns in terms of precision and recall. Our
framework shows better result in these metrics compared to another benchmark
temporal property miner called Perracotta[8].
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# Patterns Mined Precision Recall
FlowMiner 14 1.0 1.0
Perracotta 12 1.0 0.0

# Patterns Mined Precision Recall
FlowMiner 316 0.66 0.19
Perracotta 127 0.47 0.06

# Patterns Mined Precision Recall
FlowMiner 21 0.95 0.57
Perracotta 8 1.0 0.12
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We mine strict ordering relations among the events and present them in sequential pattern form that
represents the message flow specifications. The mined patterns will help to find violations for SoC
internal communication protocols. Proposed framework can play an important role to make the task
of IoT edge node verification easier.

An SoC is a combination of reactive components, called IPs that work together to
complete a set of tasks. The IPs follow some system level protocols. Many
experiments have shown that the implementation of those system-level protocols is
the major sources of various design errors. Therefore, communication-centric
validation is a key activity of SoC validation.

We can view a task as a message flow specification, for example, CPU downstream
write. References

Silicone validation is becoming more and more challenging
with the advent of more complex and customized hardware.
This framework aims to address:
1. Post-silicon validation
2. Specification mining
3. False positive specification
4. Specification mining time

We characterize the patterns to be mined as:
q Set of events
q Strong temporal dependency
q In constant environment, each execution holds the rules  

q High number of false positive patterns
q Difficulties with branches
q Long execution time
q Need for perfect traces
q High concurrency yields poor correlation

We utilize association rule mining technique to mine sequential patterns from the execution traces. We also apply
domain specific heuristic to reduce the huge search space of association rules. Proposed algorithm works on
execution traces captured by monitoring the messages among the IPs of an SoC.
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Pattern chaining: One of the fundamental problems of rule-based systems is the huge search space complexity.
After mining for each iteration, we apply 3 inference rules to generate longer patterns to avoid costly mining process.
This is one of our optimization steps.
The iteration between mining and chaining keeps going until all the valid rules are found upto a user defined length L.

Mining sequential patterns of longer lengths has always been a challenging task, especially for
concurrent systems that are also recurrent. Hence our proposed algorithm shows promising result
compared to Perracotta. We define precision as the ratio between the number of valid patterns
mined and the number of total mined patterns. And recall as the ratio between the number of
original flow instances mined and original flow instances exercised.

Fig. 1: An SoC prototype with different IPs

Fig. 2: LPN formulation of a CPU write flow

Fig. 3: Cost of Silicon validation getting worse (source: intel)

Fig. 4: Post-silicon trace mining

Fig. 5:  Worflow of FlowMiner

Pattern mining: We apply 100% forward and backward confidence restriction to mine patterns that hold over all
traces. The reason to mining assertion is to find out flows implemented by the IoT hardware core, which are invariant
over different trace. This strong strictness in this step also reduces the overall search space without compromising
our sole objective. The outcome of this step two set of patterns where each of the subsequences has 100% forward
or backward confidence or both at the same time.

FlowMiner workflow
Trace Processing: We perform address-based trace slicing in this step. Trace processing is an important step
where the principle focus is to increase correlation between the base patterns which are used to form longer patterns
in the later steps. We utilize address data field of each message found in the trace to slice original trace into sub-
traces and mine binary patterns from them in the next step.

Post Processing: This is the representational and optional step. In this step mined patterns could be ranked
according to the user demand. It also counts the number of branches, most-often taken branches etc. in the flows.

Forward Confidence:  For a sequence ei → ej in a trace T, conff((ei ,ej ),T) =support((ei ,ej ),T)
support(ei ,T)

Backward Confidence:  For a sequence ei → ej in a trace T, confb((ei ,ej ),T) =support((ei ,ej ),T)
support(ej,T)

Fig. 6: Branch in flows

Tab. 1: Flow mining from synthe4c traces of CPU0_write 

Tab. 2: Flow mining from synthe4c traces of 10 different flows

Tab. 3: Flow mining from SoC model simulation execution traces

Challenges to overcome:


